FGFC1 Selectively Inhibits Erlotinib-Resistant Non-Small Cell Lung Cancer via Elevation of ROS Mediated by the EGFR/PI3K/Akt/mTOR Pathway

Author:

Yan Shike,Zhang Bing,Feng Jingwen,Wu Haigang,Duan Namin,Zhu Yamin,Zhao Yueliang,Shen Shuang,Zhang Kai,Wu Wenhui,Liu Ning

Abstract

Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been used as a first-line treatment for patients harboring with EGFR mutations in advanced NSCLC. Nevertheless, the drug resistance after continuous and long-term chemotherapies considerably limits its clinical efficacy. Therefore, it is of great importance to develop new chemotherapeutic agents and treatment strategies to conquer the drug resistance. FGFC1 (Fungi fibrinolytic compound 1), a type of bisindole alkaloid from a metabolite of the rare marine fungi Starchbotrys longispora. FG216, has exhibited excellent fibrinolytic and anti-inflammatory activity. However, the potent efficacy of FGFC1 in human cancer therapy requires further study. Herein, we demonstrated that FGFC1 selectively suppressed the growth of NSCLC cells with EGFR mutation. Mechanistically, FGFC1 treatment significantly induced the apoptosis of erlotinib-resistant NSCLC cells H1975 in a dose-dependent manner, which was proved to be mediated by mitochondrial dysfunction and elevated accumulation of intracellular reactive oxygen species (ROS). Scavenging ROS not only alleviated FGFC1-induced apoptosis but also relieved the decrease of phospho-Akt. We further confirmed that FGFC1 significantly decreased the phosphorylation of protein EGFR, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) in H1975 cells. Notably, PI3K inhibitor (LY294002) could promote the accumulation of ROS and the expression levels of apoptosis-related proteins induced by FGFC1. Molecular dynamics simulations indicated that FGFC1 can inhibit EGFR and its downstream PI3K/Akt/mTOR pathway through directly binding to EGFR, which displayed a much higher binding affinity to EGFRT790M/L858R than EGFRWT. Additionally, FGFC1 treatment also inhibited the migration and invasion of H1975 cells. Finally, FGFC1 effectively inhibited tumor growth in the nude mice xenograft model of NSCLC. Taken together, our results indicate that FGFC1 may be a potential candidate for erlotinib-resistant NSCLC therapy.

Funder

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3