Digital Research Environment(DRE)-enabled Artificial Intelligence (AI) to facilitate early stage drug development

Author:

Barrett Jeffrey S.,Oskoui Solmaz Eradat,Russell Scott,Borens Amanda

Abstract

Early-stage drug discovery is highly dependent upon drug target evaluation, understanding of disease progression and identification of patient characteristics linked to disease progression overlaid upon chemical libraries of potential drug candidates. Artificial intelligence (AI) has become a credible approach towards dealing with the diversity and volume of data in the modern drug development phase. There are a growing number of services and solutions available to pharmaceutical sponsors though most prefer to constrain their own data to closed solutions given the intellectual property considerations. Newer platforms offer an alternative, outsourced solution leveraging sponsors data with other, external open-source data to anchor predictions (often proprietary algorithms) which are refined given data indexed upon the sponsor’s own chemical libraries. Digital research environments (DREs) provide a mechanism to ingest, curate, integrate and otherwise manage the diverse data types relevant for drug discovery activities and also provide workspace services from which target sharing and collaboration can occur providing yet another alternative with sponsors being in control of the platform, data and predictive algorithms. Regulatory engagement will be essential in the operationalizing of the various solutions and alternatives; current treatment of drug discovery data may not be adequate with respect to both quality and useability in the future. More sophisticated AI/ML algorithms are likely based on current performance metrics and diverse data types (e.g., imaging and genomic data) will certainly be a more consistent part of the myriad of data types that fuel future AI-based algorithms. This favors a dynamic DRE-enabled environment to support drug discovery.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Reference36 articles.

1. Federating data access, alzheimer’s data research2021

2. The tuberculosis drug accelerator at year 10: What have we learned?;Aldridge;Nat. Med.,2021

3. Perspective on data-sharing requirements for the necessary evolution of drug development;Barrett;J. Clin. Pharmacol.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3