DACPGTN: Drug ATC Code Prediction Method Based on Graph Transformer Network for Drug Discovery

Author:

Yan Chaokun,Suo Zhihao,Wang Jianlin,Zhang Ge,Luo Huimin

Abstract

The Anatomical Therapeutic Chemical (ATC) classification system is a drug classification scheme proposed by the World Health Organization, which is widely used for drug screening, repositioning, and similarity research. The ATC system assigns different ATC codes to drugs based on their anatomy, pharmacological, therapeutics and chemical properties. Predicting the ATC code of a given drug helps to understand the indication and potential toxicity of the drug, thus promoting its use in the therapeutic phase and accelerating its development. In this article, we propose an end-to-end model DACPGTN to predict the ATC code for the given drug. DACPGTN constructs composite features of drugs, diseases and targets by applying diverse biomedical information. Inspired by the application of Graph Transformer Network, we learn potential novel interactions among drugs diseases and targets from the known interactions to construct drug-target-disease heterogeneous networks containing comprehensive interaction information. Based on the constructed composite features and learned heterogeneous networks, we employ graph convolution network to generate the embedding of drug nodes, which are further used for the multi-label learning tasks in drug discovery. Experiments on the benchmark datasets demonstrate that the proposed DACPGTN model can achieve better prediction performance than the existing methods. The source codes of our method are available athttps://github.com/Szhgege/DACPGTN.

Funder

National Natural Science Foundation of China

Education Department of Henan Province

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Reference51 articles.

1. Principal Component Analysis;Abdi;WIREs Comp. Stat.,2010

2. Deep Learning Using Rectified Linear Units (Relu);Agarap,2018

3. Pearson Correlation Coefficient;Benesty,2009

4. Accurate Computation of the Log-Sum-Exp and Softmax Functions;Blanchard,2019

5. Predicting Anatomical Therapeutic Chemical (Atc) Classification of Drugs by Integrating Chemical-Chemical Interactions and Similarities;Chen;PLoS One,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3