Mitochonic Acid-5 Inhibits Reactive Oxygen Species Production and Improves Human Chondrocyte Survival by Upregulating SIRT3-Mediated, Parkin-dependent Mitophagy

Author:

Xin Ruobing,Xu Yiyang,Long Dianbo,Mao Guping,Liao Hongyi,Zhang Ziji,Kang Yan

Abstract

Mitochondrial dysfunction is related to the pathogenesis of osteoarthritis (OA); however, there are no effective drugs to treat OA for maintaining mitochondrial homeostasis. Studies have shown that mitochonic acid-5 (MA-5) has a protective effect against mitochondrial damage and plays a role in mitophagy. However, it is not clear whether MA-5 has a beneficial effect on inflammatory articular cartilage. Here, human OA cartilage was obtained from patients undergoing total joint replacement. Interleukin-1β (IL-1β) was used to stimulate chondrocytes and induce inflammatory injury. Cell Counting Kit-8, TUNEL, and flow cytometry assays were used to assess apoptosis. Gene expression was examined using quantitative reverse transcription-polymerase chain reaction. Mitochondrial function was evaluated using immunoblotting, mitochondrial membrane potential assay, JC-1 staining, and immunofluorescence analysis. Mitophagy was detected using immunoblotting and immunofluorescence. 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP), a specific inhibitor of Sirtuin 3 (SIRT3), was used to block the SIRT3/Parkin pathway. Mitophagy in the cartilage sections was evaluated via immunohistochemistry. IL-1β was found to induce chondrocyte apoptosis by inhibiting SIRT3 expression and mitophagy. In addition, inflammatory damage reduced the mitochondrial membrane potential and promoted the production of intracellular reactive oxygen species (ROS), leading to increased mitochondrial division, mitochondrial fusion inhibition, and the consequent mitochondrial damage. In contrast, the MA-5 treatment inhibited excessive ROS production by upregulating mitophagy, maintaining the mitochondrial membrane potential, and reducing mitochondrial apoptosis. After chemically blocking SIRT3 with 3-TYP, Parkin-related mitophagy was also inhibited, an effect that was prevented by pretreatment of the chondrocytes with MA-5, thereby suggesting that SIRT3 is upstream of Parkin. Overall, MA-5 was found to enhance the activity of SIRT3, promote Parkin-dependent mitophagy, eliminate depolarized/damaged mitochondria in chondrocytes, and protect cartilage cells. In conclusion, MA-5 inhibits IL-1β-induced oxidative stress and protects chondrocytes by upregulating the SIRT3/Parkin-related autophagy signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3