Deep learning model for automatic segmentation of lungs and pulmonary metastasis in small animal MR images

Author:

Lefevre Edgar,Bouilhol Emmanuel,Chauvière Antoine,Souleyreau Wilfried,Derieppe Marie-Alix,Trotier Aurélien J.,Miraux Sylvain,Bikfalvi Andreas,Ribot Emeline J.,Nikolski Macha

Abstract

Lungs are the most frequent site of metastases growth. The amount and size of pulmonary metastases acquired from MRI imaging data are the important criteria to assess the efficacy of new drugs in preclinical models. While efficient solutions both for MR imaging and the downstream automatic segmentation have been proposed for human patients, both MRI lung imaging and segmentation in preclinical animal models remains challenging due to the physiological motion (respiratory and cardiac movements), to the low amount of protons in this organ and to the particular challenge of precise segmentation of metastases. As a consequence post-mortem analysis is currently required to obtain information on metastatic volume. In this work, we have developed a complete methodological pipeline for automated analysis of lungs and metastases in mice, consisting of an MR sequence for image acquisition and a deep learning method for automatic segmentation of both lungs and metastases. On one hand, we optimized an MR sequence for mouse lung imaging with high contrast for high detection sensitivity. On the other hand we developed DeepMeta, a multiclass U-Net 3+ deep learning model to automatically segment the images. To assess if the proposed deep learning pipeline is able to provide an accurate segmentation of both lungs and pulmonary metastases, we have longitudinally imaged mice with fast- and slow-growing metastasis. Fifty-five balb/c mice were injected with two different derivatives of renal carcinoma cells. Mice were imaged with a SG-bSSFP (self-gated balanced steady state free precession) sequence at different time points after the injection of cancer cells. Both lung and metastases segmentations were manually performed by experts. DeepMeta was trained to perform lung and metastases segmentation based on the resulting ground truth annotations. Volumes of lungs and of pulmonary metastases as well as the number of metastases per mouse were measured on a separate test dataset of MR images. Thanks to the SG method, the 3D bSSFP images of lungs were artifact-free, enabling the downstream detection and serial follow-up of metastases. Moreover, both lungs and metastases segmentation was accurately performed by DeepMeta as soon as they reached the volume of 0.02mm3. Thus we were able to distinguish two groups of mice in terms of number and volume of pulmonary metastases as well as in terms of the slow versus fast patterns of growth of metastases. We have shown that our methodology combining SG-bSSFP with deep learning, enables processing of the whole animal lungs and is thus a viable alternative to histology alone.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference33 articles.

1. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks;Berman,2018

2. Automatic detection and segmentation of brain metastases on multimodal mr images with a deep convolutional neural network;Charron;Comput. Biol. Med.,2018

3. The prognostic importance of the number of metastases in pulmonary metastasectomy of colorectal cancer;Cho;World J. Surg. Oncol.,2015

4. Xception: Deep learning with depthwise separable convolutions;Chollet,2017

5. Lung volume quantified by mri reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: Effects of som230;Egger;Am. J. Physiology-Lung Cell. Mol. Physiology,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3