Molecular cartooning with knowledge graphs

Author:

Santangelo Brook E.,Gillenwater Lucas A.,Salem Nourah M.,Hunter Lawrence E.

Abstract

Molecular “cartoons,” such as pathway diagrams, provide a visual summary of biomedical research results and hypotheses. Their ubiquitous appearance within the literature indicates their universal application in mechanistic communication. A recent survey of pathway diagrams identified 64,643 pathway figures published between 1995 and 2019 with 1,112,551 mentions of 13,464 unique human genes participating in a wide variety of biological processes. Researchers generally create these diagrams using generic diagram editing software that does not itself embody any biomedical knowledge. Biomedical knowledge graphs (KGs) integrate and represent knowledge in a semantically consistent way, systematically capturing biomedical knowledge similar to that in molecular cartoons. KGs have the potential to provide context and precise details useful in drawing such figures. However, KGs cannot generally be translated directly into figures. They include substantial material irrelevant to the scientific point of a given figure and are often more detailed than is appropriate. How could KGs be used to facilitate the creation of molecular diagrams? Here we present a new approach towards cartoon image creation that utilizes the semantic structure of knowledge graphs to aid the production of molecular diagrams. We introduce a set of “semantic graphical actions” that select and transform the relational information between heterogeneous entities (e.g., genes, proteins, pathways, diseases) in a KG to produce diagram schematics that meet the scientific communication needs of the user. These semantic actions search, select, filter, transform, group, arrange, connect and extract relevant subgraphs from KGs based on meaning in biological terms, e.g., a protein upstream of a target in a pathway. To demonstrate the utility of this approach, we show how semantic graphical actions on KGs could have been used to produce three existing pathway diagrams in diverse biomedical domains: Down Syndrome, COVID-19, and neuroinflammation. Our focus is on recapitulating the semantic content of the figures, not the layout, glyphs, or other aesthetic aspects. Our results suggest that the use of KGs and semantic graphical actions to produce biomedical diagrams will reduce the effort required and improve the quality of this visual form of scientific communication.

Funder

U.S. National Library of Medicine

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3