Taxonomy Informed Clustering, an Optimized Method for Purer and More Informative Clusters in Diversity Analysis and Microbiome Profiling

Author:

Kioukis Antonios,Pourjam Mohsen,Neuhaus Klaus,Lagkouvardos Ilias

Abstract

Bacterial diversity is often analyzed using 16S rRNA gene amplicon sequencing. Commonly, sequences are clustered based on similarity cutoffs to obtain groups reflecting molecular species, genera, or families. Due to the amount of the generated sequencing data, greedy algorithms are preferred for their time efficiency. Such algorithms rely only on pairwise sequence similarities. Thus, sometimes sequences with diverse phylogenetic background are clustered together. In contrast, taxonomic classifiers use position specific taxonomic information in assigning a probable taxonomy to a given sequence. Here we introduce Taxonomy Informed Clustering (TIC), a novel approach that utilizes classifier-assigned taxonomy to restrict clustering to only those sequences that share the same taxonomic path. Based on this concept, we offer a complete and automated pipeline for processing of 16S rRNA amplicon datasets in diversity analyses. First, raw reads are processed to form denoised amplicons. Next, the denoised amplicons are taxonomically classified. Finally, the TIC algorithm progressively assigning clusters at molecular species, genus and family levels. TIC outperforms greedy clustering algorithms like USEARCH and VSEARCH in terms of clusters’ purity and entropy, when using data from the Living Tree Project as test samples. Furthermore, we applied TIC on a dataset containing all Bifidobacteriaceae-classified sequences from the IMNGS database. Here, TIC identified evidence for 1000s of novel molecular genera and species. These results highlight the straightforward application of the TIC pipeline and superior results compared to former methods in diversity studies. The pipeline is freely available at: https://github.com/Lagkouvardos/TIC.

Funder

Hellenic Foundation for Research and Innovation

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3