Sparse bayesian learning for genomic selection in yeast

Author:

Ayat Maryam,Domaratzki Mike

Abstract

Genomic selection, which predicts phenotypes such as yield and drought resistance in crops from high-density markers positioned throughout the genome of the varieties, is moving towards machine learning techniques to make predictions on complex traits that are controlled by several genes. In this paper, we consider sparse Bayesian learning and ensemble learning as a technique for genomic selection and ranking markers based on their relevance to a trait. We define and explore two different forms of the sparse Bayesian learning for predicting phenotypes and identifying the most influential markers of a trait, respectively. We apply our methods on a Saccharomyces cerevisiae dataset, and analyse our results with respect to existing related works, trait heritability, as well as the accuracies obtained from linear and Gaussian kernel functions. We find that sparse Bayesian methods are not only competitive with other machine learning methods in predicting yeast growth in different environments, but are also capable of identifying the most important markers, including both positive and negative effects on the growth, from which biologists can get insight. This attribute can make our proposed ensemble of sparse Bayesian learners favourable in ranking markers based on their relevance to a trait.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference47 articles.

1. Accelerating the relevance vector machine via data partitioning;Ben-Shimon;Found. Comput. Decis. Sci.,2006

2. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress;Beyene;Crop Sci.,2015

3. A ranking approach to genomic selection;Blondel;Plos One,2015

4. Finding the sources of missing heritability in a yeast cross;Bloom;Nature,2013

5. Bagging predictors;Breiman;Mach. Learn.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3