PIEZO1 is downregulated in glenohumeral chondrocytes in early cuff tear arthropathy following a massive rotator cuff tear in a mouse model

Author:

Anderson Devon E.,Broun Katherine G.,Kundu Paromita,Jing Xingyu,Tang Xiang,Lu Christopher,Kotelsky Alexander,Mannava Sandeep,Lee Whasil

Abstract

Introduction: A massive rotator cuff tear (RCT) leads to glenohumeral joint destabilization and characteristic degenerative changes, termed cuff tear arthropathy (CTA). Understanding the response of articular cartilage to a massive RCT will elucidate opportunities to promote homeostasis following restoration of joint biomechanics with rotator cuff repair. Mechanically activated calcium-permeating channels, in part, modulate the response of distal femoral chondrocytes in the knee against injurious loading and inflammation. The objective of this study was to investigate PIEZO1-mediated mechanotransduction of glenohumeral articular chondrocytes in the altered biomechanical environment following RCT to ultimately identify potential therapeutic targets to attenuate cartilage degeneration after rotator cuff repair.Methods: First, we quantified mechanical susceptibility of chondrocytes in mouse humeral head cartilage ex vivo with treatments of specific chemical agonists targeting PIEZO1 and TRPV4 channels. Second, using a massive RCT mouse model, chondrocytes were assessed for mechano-vulnerability, PIEZO1 expression, and calcium signaling activity 14-week post-injury, an early stage of CTA.Results: In native humeral head chondrocytes, chemical activation of PIEZO1 (Yoda1) significantly increased chondrocyte mechanical susceptibility against impact loads, while TRPV4 activation (GSK101) significantly decreased impact-induced chondrocyte death. A massive RCT caused morphologic and histologic changes to the glenohumeral joint with decreased sphericity and characteristic bone bruising of the posterior superior quadrant of the humeral head. At early CTA, chondrocytes in RCT limbs exhibit a significantly decreased functional expression of PIEZO1 compared with uninjured or sham controls.Discussion: In contrast to the hypothesis, PIEZO1 expression and activity is not increased, but rather downregulated, after massive RCT at the early stage of cuff tear arthropathy. These results may be secondary to the decreased axial loading after glenohumeral joint decoupling in RCT limbs.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3