Remediation of Lead-Contaminated Water by Red Yeast and Different Types of Phosphate

Author:

Tian Da,Cheng Xiaohui,Wang Liyan,Hu Jun,Zhou Ningning,Xia Jingjing,Xu Meiyue,Zhang Liangliang,Gao Hongjian,Ye Xinxin,Zhang Chaochun

Abstract

Rhodotorulamucilaginosa (Rho) can secrete large amounts of extracellular polymeric substances (EPS) to resist lead (Pb) toxicity. Phosphate is an effective material for the remediation of Pb. This study explored the Pb remediation by the combination of Rho and different types of phosphate in water. To do so, four phosphates, namely, ferric phosphate (FePO4, Fe-P), aluminum phosphate (AlPO4, Al-P), calcium phosphate [Ca3(PO4)2, Ca-P], and phosphogypsum (PG) were employed along with Rho. Compared with Rho application, the addition of phosphate significantly promoted the secretion of EPS by Rho (21–25 vs 16 mg). The formed EPS-Pb contributes to the Pb immobilization in the combination of Rho and phosphate. After 6 days of incubation, Rho + phosphate treatments immobilized over 98% of Pb cations, which is significantly higher than Rho treatment (94%). Of all Rho + phosphate treatments, Ca-P and PG-amended Rho had higher secretion of EPS, resulting in higher Pb removal. Nevertheless, PG had the highest efficiency for Pb removal compared with other phosphates, which reached 99.9% after 6 days of incubation. Likewise, new Pb minerals, such as pyromorphite and lead sulfate, only appeared in Rho + PG treatment. Altogether, this study concludes on the combined application of Rho and phosphate as an efficient approach to promote Pb remediation, particularly using PG waste.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Anhui Agricultural University

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3