Periosteum and fascia lata: Are they so different?

Author:

Manon Julie,Evrard Robin,Maistriaux Louis,Fievé Lies,Heller Ugo,Magnin Delphine,Boisson Jean,Kadlub Natacha,Schubert Thomas,Lengelé Benoît,Behets Catherine,Cornu Olivier

Abstract

Introduction: The human fascia lata (HFL) is used widely in reconstructive surgery in indications other than fracture repair. The goal of this study was to compare microscopic, molecular, and mechanical properties of HFL and periosteum (HP) from a bone tissue engineering perspective.Material and Methods: Cadaveric HP and HFL (N = 4 each) microscopic morphology was characterized using histology and immunohistochemistry (IHC), and the extracellular matrix (ECM) ultrastructure assessed by means of scanning electron microscopy (SEM). DNA, collagen, elastin, glycosaminoglycans, major histocompatibility complex Type 1, and bone morphogenetic protein (BMP) contents were quantified. HP (N = 6) and HFL (N = 11) were submitted to stretch tests.Results: Histology and IHC highlighted similarities (Type I collagen fibers and two-layer organization) but also differences (fiber thickness and compaction and cell type) between both tissues, as confirmed using SEM. The collagen content was statistically higher in HFL than HP (735 vs. 160.2 μg/mg dry weight, respectively, p < 0.0001). On the contrary, DNA content was lower in HFL than HP (404.75 vs. 1,102.2 μg/mg dry weight, respectively, p = 0.0032), as was the immunogenic potential (p = 0.0033). BMP-2 and BMP-7 contents did not differ between both tissues (p = 0.132 and p = 0.699, respectively). HFL supported a significantly higher tension stress than HP.Conclusion: HP and HFL display morphological differences, despite their similar molecular ECM components. The stronger stretching resistance of HFL can specifically be explained by its higher collagen content. However, HFL contains many fewer cells and is less immunogenic than HP, as latter is rich in periosteal stem cells. In conclusion, HFL is likely suitable to replace HP architecture to confer a guide for bone consolidation, with an absence of osteogenicity. This study could pave the way to a bio-engineered periosteum built from HFL.

Funder

Fonds De La Recherche Scientifique - FNRS

Fonds Spéciaux de Recherche

Fondation des Gueules Cassées

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3