Effect of Exercise Volume on Plantar Microcirculation and Tissue Hardness in People With Type 2 Diabetes

Author:

Ren Weiyan,Duan Yijie,Jan Yih-Kuen,Ye Wenqiang,Li Jianchao,Liu Wei,Liu Hongmei,Guo Junchao,Pu Fang,Fan Yubo

Abstract

Objective: Exercise has been reported to be beneficial for people with type 2 diabetes (T2DM), but exercise, especially weight-bearing exercise, may increase the risk of diabetic foot ulcers (DFUs). This study aimed to explore the associations between different volumes of weight-bearing physical activities and plantar microcirculation and tissue hardness in people with T2DM.Methods: 130 elderly people with T2DM were enrolled for this cross-sectional study. They were classified into the high exercise volume group and the low exercise volume group based on their weekly energy expenditure (metabolic equivalents per week) in the past year. Weekly energy expenditure was calculated using the International Physical Activity Questionnaire and the Compendium of Physical Activities. The plantar oxygen saturation (SO2) and soft tissue hardness of each participant’s right foot were measured.Results: A total of 80 participants completed the trial. The average exercise energy expenditure of the high exercise volume group and the low exercise volume group were significantly different (p < 0.05). The results showed that the SO2 of the high exercise volume group (67.25 ± 6.12%) was significantly higher than the low exercise volume group (63.75 ± 8.02%, p < 0.05). The plantar tissue hardness of the high exercise volume group was lower than the low exercise volume group in the big toe, midfoot and hindfoot regions (p < 0.05).Conclusion: This study demonstrates that higher volumes of exercise are associated with better plantar microcirculation and lower plantar tissue hardness in people with T2DM. The findings of this study indicate that weight-bearing exercise may not increase risk of developing diabetic foot ulcers.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3