Using Stock-Flow Diagrams to Visualize Theranostic Approaches to Solid Tumors in Personalized Nanomedicine

Author:

Cazzagon Virginia,Romano Alessandra,Gonella Francesco

Abstract

Personalized nanomedicine has rapidly evolved over the past decade to tailor the diagnosis and treatment of several diseases to the individual characteristics of each patient. In oncology, iron oxide nano-biomaterials (NBMs) have become a promising biomedical product in targeted drug delivery as well as in magnetic resonance imaging (MRI) as a contrast agent and magnetic hyperthermia. The combination of diagnosis and therapy in a single nano-enabled product (so-called theranostic agent) in the personalized nanomedicine has been investigated so far mostly in terms of local events, causes-effects, and mutual relationships. However, this approach could fail in capturing the overall complexity of a system, whereas systemic approaches can be used to study the organization of phenomena in terms of dynamic configurations, independent of the nature, type, or spatial and temporal scale of the elements of the system. In medicine, complex descriptions of diseases and their evolution are daily assessed in clinical settings, which can be thus considered as complex systems exhibiting self-organizing and non-linear features, to be investigated through the identification of dynamic feedback-driven behaviors. In this study, a Systems Thinking (ST) approach is proposed to represent the complexity of the theranostic modalities in the context of the personalized nanomedicine through the setting up of a stock-flow diagram. Specifically, the interconnections between the administration of magnetite NBMs for diagnosis and therapy of tumors are fully identified, emphasizing the role of the feedback loops. The presented approach has revealed its suitability for further application in the medical field. In particular, the obtained stock-flow diagram can be adapted for improving the future knowledge of complex systems in personalized nanomedicine as well as in other nanosafety areas.

Funder

Università Ca’ Foscari di Venezia

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3