RNAi-based Boolean gates in the yeast Saccharomyces cerevisiae

Author:

Tian Ximing,Volkovinskiy Andrey,Marchisio Mario Andrea

Abstract

Boolean gates, the fundamental components of digital circuits, have been widely investigated in synthetic biology because they permit the fabrication of biosensors and facilitate biocomputing. This study was conducted to design and construct Boolean gates in the yeast Saccharomyces cerevisiae, the main component of which was the RNA interference pathway (RNAi) that is naturally absent from the budding yeast cells. We tested different expression cassettes for the siRNA precursor (a giant hairpin sequence, a DNA fragment—flanked by one or two introns—between convergent promoters or transcribed separately in the sense and antisense directions) and placed different components under the control of the circuit inputs (i.e., the siRNA precursor or proteins such as the Dicer and the Argonaute). We found that RNAi-based logic gates are highly sensitive to promoter leakage and, for this reason, challenging to implement in vivo. Convergent-promoter architecture turned out to be the most reliable solution, even though the overall best performance was achieved with the most difficult design based on the siRNA precursor as a giant hairpin.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3