Rapid and sensitive detection of superoxide dismutase in serum of the cervical cancer by 4-aminothiophenol-functionalized bimetallic Au-Ag nanoboxs array

Author:

Xia Ji,Chen Gao-Yang,Li You You,Chen Lu,Lu Dan

Abstract

Early, efficient and sensitive detection of serum markers in cervical cancer is very important for the treatment and prognosis to cervical cancer patients. In this paper, a SERS platform based on surface enhanced Raman scattering technology was proposed to quantitatively detect superoxide dismutase in serum of cervical cancer patients. Au-Ag nanoboxs array was made by oil-water interface self-assembly method as the trapping substrate. The single-layer Au-AgNBs array was verified by SERS for possessing excellent uniformity, selectivity and reproducibility. 4-aminothiophenol (4-ATP) was used as Raman signal molecule, it will be oxidized to dithiol azobenzene under the surface catalytic reaction with the condition of PH = 9 and laser irradiation. The quantitative detection of SOD could be achieved by calculating the change of characteristic peak ratio. When the concentration was from 10 U mL−1–160 U mL−1, the concentration of SOD could be accurately and quantitatively detected in human serum. The whole test was completed within 20 min and the limit of quantitation was 10 U mL−1. In addition, serum samples from the cervical cancer, the cervical intraepithelial neoplasia and healthy people were tested by the platform and the results were consistent with those of ELISA. The platform has great potential as a tool for early clinical screening of cervical cancer in the future.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3