IoT-blockchain empowered Trinet: optimized fall detection system for elderly safety

Author:

Alfayez Fayez,Bhatia Khan Surbhi

Abstract

Numerous elderly folks reside alone in their homes. Seniors may find it difficult to ask for assistance if they fall. As the elderly population keeps growing, elderly fall incidents are becoming a critical public health concern. Creating a fall detection system for the elderly using IoT and blockchain is the aim of this study. Data collection, pre-processing, feature extraction, feature selection, fall detection, and emergency response and assistance are the six fundamental aspects of the proposed model. The sensor data is collected from wearable devices using elderly such as accelerometers and gyroscopes. The collected data is pre-processed using missing value removal, null value handling. The features are extracted after pre-processed data using statistical features, autocorrelation, and Principal Component Analysis The proposed approach utilizes a novel hybrid HSSTL combines Teaching-Learning-Based Optimization and Spring Search Algorithm to select the optimal features. The proposed approach employs TriNet, including Long Short-Term Memory, optimized Convolutional Neural Network (CNN), and Recurrent Neural Network for accurate fall detection. To enhance fall detection accuracy, use the optimized Convolutional Neural Network obtained through the hybrid optimization model HSSTL. Securely store fall detection information in the Blockchain network when a fall occurs. Alert neighbours, family members, or those providing immediate assistance about the fall occurrence using Blockchain network. The proposed model is implemented in Python. The effectiveness of the suggested model is evaluated using metrics for accuracy, precision, recall, sensitivity, specificity, f-measure, NPV, FPR, FNR, and MCC. The proposed model outperformed with the maximum accuracy of 0.974015 at an 80% learning rate, whereas the suggested model had the best accuracy score of 0.955679 at a 70% learning rate.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3