The efficacy of vancomycin-loaded biphasic calcium phosphate bone substitute in the promotion of new bone growth and the prevention of postoperative infection

Author:

Wang Shi-Yong,Yao Ru-Bin,Yang Kai-Shun,Liang Huang-Chien,Su Chen-Ying,Fang Hsu-Wei,Lim Sher-Wei

Abstract

Background: Due to the increasing need for suitable alternatives to bone grafts, artificial bones made of biphasic calcium phosphate (BCP) are currently being extensively researched. These porous bone substitutes have also demonstrated considerable incorporation with the host bone, and new bone is able to grow within the porous structure. They therefore offer a potential therapeutic approach for bone defects.Methods: Vancomycin-loaded Bicera™, a BCP bone substitute, was investigated in order to prevent implant-associated osteomyelitis and postoperative infection after orthopedic surgery. The loading capacity of Bicera™ was measured to understand its potential antibiotic adsorption volume. An antibiotic susceptibility test was also carried out to analyze the effect of Bicera™ loaded with different concentrations of vancomycin on the growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin-loaded Bicera™ was implanted into rabbits with bone defects, and general gross, radiographic, and histological evaluation was undertaken at 4, 12, and 24 weeks after implantation.Results: The maximum loading capacity of vancomycin-loaded Bicera™ was 0.9 ml of liquid regardless of the vancomycin concentration. Antibiotic susceptibility tests showed that vancomycin-loaded Bicera™ inhibited the growth of MRSA for 6 weeks. In addition, animal studies revealed that new bone grew into the vancomycin-loaded Bicera™. The percentage of new bone formation from 4 to 24 weeks after implantation increased from 17% to 36%.Conclusion: Vancomycin-loaded Bicera™ could effectively inhibit the growth of MRSA in vitro. It was found to incorporate into the host bone well, and new bone was able to grow within the bone substitute. The results of this study indicate that vancomycin-loaded Bicera™ is a potential bone substitute that can prevent implant-associated osteomyelitis and postoperative infection.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference25 articles.

1. Mechanical complications and reconstruction strategies at the site of hip spacer implantation;Anagnostakos;Int. J. Med. Sci.,2009

2. Impact of surgical site infection on healthcare costs and patient outcomes: A systematic review in six European countries;Badia;J. Hosp. Infect.,2017

3. Release of gentamicin from cement spacers in two-stage procedures for hip and knee prosthetic infection: An in vivo pharmacokinetic study with clinical follow-up;Balato;J. Biol. Regul. Homeost. Agents,2015

4. Vancomycin-laden calcium phosphate-calcium sulfate composite allows bone formation in a rat infection model;Boyle;PLoS One,2019

5. Single-dose bone pharmacokinetics of vancomycin in a porcine implant-associated osteomyelitis model;Bue;J. Orthop. Res.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bioceramic materials in bone-implantable drug delivery systems: A review;Journal of Drug Delivery Science and Technology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3