Author:
Xu Yuchen,Yao Yuanfa,Lyu Hao,Ng Stephanie,Xu Yingke,Poon Wai Sang,Zheng Yongping,Zhang Shaomin,Hu Xiaoling
Abstract
Background: Traditional rehabilitation with uniformed intensity would ignore individual tolerance and introduce the second injury to stroke survivors due to overloaded training. However, effective control of the training intensity of different stroke survivors is still lacking. The purpose of the study was to investigate the rehabilitative effects of electromyography (EMG)-based fatigue-controlled treadmill training on rat stroke model.Methods: Sprague–Dawley rats after intracerebral hemorrhage and EMG electrode implantation surgeries were randomly distributed into three groups: the control group (CTRL, n = 11), forced training group (FOR-T, n = 11), and fatigue-controlled training group (FAT-C, n = 11). The rehabilitation interventions were delivered every day from day 2 to day 14 post-stroke. No training was delivered to the CTRL group. The rats in the FOR-T group were forced to run on the treadmill without rest. The fatigue level was monitored in the FAT-C group through the drop rate of EMG mean power frequency, and rest was applied to the rats when the fatigue level exceeded the moderate fatigue threshold. The speed and accumulated running duration were comparable in the FAT-C and the FOR-T groups. Daily evaluation of the motor functions was performed using the modified Neurological Severity Score. Running symmetry was investigated by the symmetry index of EMG bursts collected from both hind limbs during training. The expression level of neurofilament-light in the striatum was measured to evaluate the neuroplasticity.Results: The FAT-C group showed significantly lower modified Neurological Severity Score compared with the FOR-T (P ≤ 0.003) and CTRL (P ≤ 0.003) groups. The FAT-C group showed a significant increase in the symmetry of hind limbs since day 7 (P = 0.000), whereas the FOR-T group did not (P = 0.349). The FAT-C group showed a higher concentration of neurofilament-light compared to the CTRL group (P = 0.005) in the unaffected striatum and the FOR-T group (P = 0.021) in the affected striatum.Conclusion: The treadmill training with moderate fatigue level controlled was more effective in motor restoration than forced training. The fatigue-controlled physical training also demonstrated positive effects in the striatum neuroplasticity. This study indicated that protocol with individual fatigue-controlled training should be considered in both animal and clinical studies for better stroke rehabilitation.
Subject
Biomedical Engineering,Histology,Bioengineering,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献