A deep learning knowledge distillation framework using knee MRI and arthroscopy data for meniscus tear detection

Author:

Ying Mengjie,Wang Yufan,Yang Kai,Wang Haoyuan,Liu Xudong

Abstract

Purpose: To construct a deep learning knowledge distillation framework exploring the utilization of MRI alone or combing with distilled Arthroscopy information for meniscus tear detection.Methods: A database of 199 paired knee Arthroscopy-MRI exams was used to develop a multimodal teacher network and an MRI-based student network, which used residual neural networks architectures. A knowledge distillation framework comprising the multimodal teacher network T and the monomodal student network S was proposed. We optimized the loss functions of mean squared error (MSE) and cross-entropy (CE) to enable the student network S to learn arthroscopic information from the teacher network T through our deep learning knowledge distillation framework, ultimately resulting in a distilled student network ST. A coronal proton density (PD)-weighted fat-suppressed MRI sequence was used in this study. Fivefold cross-validation was employed, and the accuracy, sensitivity, specificity, F1-score, receiver operating characteristic (ROC) curves and area under the receiver operating characteristic curve (AUC) were used to evaluate the medial and lateral meniscal tears detection performance of the models, including the undistilled student model S, the distilled student model ST and the teacher model T.Results: The AUCs of the undistilled student model S, the distilled student model ST, the teacher model T for medial meniscus (MM) tear detection and lateral meniscus (LM) tear detection are 0.773/0.672, 0.792/0.751 and 0.834/0.746, respectively. The distilled student model ST had higher AUCs than the undistilled model S. After undergoing knowledge distillation processing, the distilled student model demonstrated promising results, with accuracy (0.764/0.734), sensitivity (0.838/0.661), and F1-score (0.680/0.754) for both medial and lateral tear detection better than the undistilled one with accuracy (0.734/0.648), sensitivity (0.733/0.607), and F1-score (0.620/0.673).Conclusion: Through the knowledge distillation framework, the student model S based on MRI benefited from the multimodal teacher model T and achieved an improved meniscus tear detection performance.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3