Assessing the impact of gait speed on gait stability using multi-scale entropy fused with plantar pressure signals

Author:

Hu Zilei,Li Miaomiao,Wei Jiale,Zhao Jing,Tang Xiaojing,Wei Haicheng

Abstract

Introduction: Walking speed can affect gait stability and increase the risk of falling.Methods: In this study, we design a device to measure the distribution of the plantar pressure to investigate the impact of the walking speed on the stability of the human gait and movements of the body. We fused the entropy acquired at multiple scales with signals of the plantar pressure to evaluate the effects of the walking speed on the stability of the human gait. We simultaneously collected data on the motion-induced pressure from eight plantar regions to obtain the fused regional pressure. To verify their accuracy, we obtained data on the plantar pressure during walking by using the force table of the Qualisys system. We then extracted the peak points and intervals of the human stride from pressure signals fused over three regions, and analyzed the mechanics of their regional fusion by using the regional amplitude–pressure ratio to obtain the distribution of the plantar pressure at an asynchronous walking speed. Furthermore, we introduced multi-scale entropy to quantify the complexity of the gait and evaluate its stability at different walking speeds.Results: The results of experiments showed that increasing the speed from 2 to 6 km/h decreased the stability of the gait, with a 26.7% increase in the amplitude of pressure in the region of the forefoot. The hindfoot and forefoot regions were subjected to the minimal pressure at a speed of 2 km/h, while the most consistent stress was observed in regions of the forefoot, midfoot, and hindfoot. Moreover, the curve of entropy at a speed of 2 km/h exhibited a slow decline at a small scale and high stability at a large scale.Discussion: The multi-scale entropy increased the variation in the stability of the synchronous velocity of walking compared with the sample entropy and the analysis of regional fusion mechanics. Multi-scale entropy can thus be used to qualitatively assess the relationship between the speed and stability of the gait, and to identify the most stable gait speed that can ensure gait stability and posture control.

Funder

Natural Science Foundation of Ningxia Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3