Assessment of Stability of MIMU Probes to Skin-Marker-Based Anatomical Reference Frames During Locomotion Tasks: Effect of Different Locations on the Lower Limb

Author:

Scalera Giovanni Marco,Ferrarin Maurizio,Marzegan Alberto,Rabuffetti Marco

Abstract

Soft tissue artefacts (STAs) undermine the validity of skin-mounted approaches to measure skeletal kinematics. Magneto-inertial measurement units (MIMU) gained popularity due to their low cost and ease of use. Although the reliability of different protocols for marker-based joint kinematics estimation has been widely reported, there are still no indications on where to place MIMU to minimize STA. This study aims to find the most stable positions for MIMU placement, among four positions on the thigh, four on the shank, and three on the foot. Stability was investigated by measuring MIMU movements against an anatomical reference frame, defined according to a standard marker-based approach. To this aim, markers were attached both on the case of each MIMU (technical frame) and on bony landmarks (anatomical frame). For each MIMU, the nine angles between each versor of the technical frame with each versor of the corresponding anatomical frame were computed. The maximum standard deviation of these angles was assumed as the instability index of MIMU-body coupling. Six healthy subjects were asked to perform barefoot gait, step negotiation, and sit-to-stand. Results showed that (1) in the thigh, the frontal position was the most stable in all tasks, especially in gait; (2) in the shank, the proximal position is the least stable, (3) lateral or medial calcaneus and foot dorsum positions showed equivalent stability performances. Further studies should be done before generalizing these conclusions to different motor tasks and MIMU-body fixation methods. The above results are of interest for both MIMU-based gait analysis and rehabilitation approaches using wearable sensors-based biofeedback.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3