The Origin of Vasomotion and Stochastic Resonance in Vasomotion

Author:

Liu Shuhong,Zhao Liangjing,Liu Yang

Abstract

Vasomotion is the spontaneous time-dependent contraction and relaxation of micro arteries and the oscillating frequency is about 0.01–0.1 Hz. The physiological mechanism of vasomotion has not been thoroughly understood. From the dynamics point of view, the heartbeat is the only external loading exerted on the vascular system. We speculate that the nonlinear vascular system and the variable period of the heartbeat might induce the low-frequency vasomotion. In this study, the laser Doppler flowmeter is used to measure the time series of radial artery blood flow and reconstructed modified time series that has the same period as the measured time series but different heartbeat curves. We measured the time series of radial artery blood flow in different conditions by adding different noise disturbances on the forearm, and we decomposed the experiment pulse signal by Hilbert–Huang transform. The wavelet spectral analyses showed that the low-frequency components were induced by the variable period but independent of the shape of the heartbeat curve. Furthermore, we simulated the linear flow in a single pipe and the nonlinear flow in a piping network and found that the nonlinear flow would generate low-frequency components. From the results, we could deduce that the variable period of heartbeat and the nonlinearity of the vascular system induce vasomotion. The noise has effects on the blood signals related to the respiratory activities (∼0.3 Hz) but little influence on that related to the cardiac activities (∼1 Hz). Adding white noise and then stopping would induce an SNR increase in the frequency band related to vasomotion (∼0.1 Hz).

Funder

Hong Kong Polytechnic University

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference67 articles.

1. Evaluation of Flux Motion in Man by the Laser Doppler Technique;Bollinger;J. Vascular Res.,1991

2. Is High-Frequency Flux Motion Due to Respiration or to Vasomotion Activity;Bollinger,1993

3. Wavelet-based Analysis of Human Blood-Flow Dynamics;Bracic;Bull. Math. Biol.,1998

4. Nonlinear Dynamics of Microvascular Blood Flow;Carr;Ann. Biomed. Eng.,2000

5. Methodological Issues in the Assessment of Skin Microvascular Endothelial Function in Humans;Cracowski;Trends Pharmacol. Sci.,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3