Hydrogel-chitosan and polylactic acid-polycaprolactone bioengineered scaffolds for reconstruction of mandibular defects: a preclinical in vivo study with assessment of translationally relevant aspects

Author:

Ferrari Marco,Taboni Stefano,Chan Harley H. L.,Townson Jason,Gualtieri Tommaso,Franz Leonardo,Ruaro Alessandra,Mathews Smitha,Daly Michael J.,Douglas Catriona M.,Eu Donovan,Sahovaler Axel,Muhanna Nidal,Ventura Manuela,Dey Kamol,Pandini Stefano,Pasini Chiara,Re Federica,Bernardi Simona,Bosio Katia,Mattavelli Davide,Doglietto Francesco,Joshi Shrinidh,Gilbert Ralph W.,Nicolai Piero,Viswanathan Sowmya,Sartore Luciana,Russo Domenico,Irish Jonathan C.

Abstract

Background: Reconstruction of mandibular bone defects is a surgical challenge, and microvascular reconstruction is the current gold standard. The field of tissue bioengineering has been providing an increasing number of alternative strategies for bone reconstruction.Methods: In this preclinical study, the performance of two bioengineered scaffolds, a hydrogel made of polyethylene glycol-chitosan (HyCh) and a hybrid core-shell combination of poly (L-lactic acid)/poly (ε-caprolactone) and HyCh (PLA-PCL-HyCh), seeded with different concentrations of human mesenchymal stromal cells (hMSCs), has been explored in non-critical size mandibular defects in a rabbit model. The bone regenerative properties of the bioengineered scaffolds were analyzed by in vivo radiological examinations and ex vivo radiological, histomorphological, and immunohistochemical analyses.Results: The relative density increase (RDI) was significantly more pronounced in defects where a scaffold was placed, particularly if seeded with hMSCs. The immunohistochemical profile showed significantly higher expression of both VEGF-A and osteopontin in defects reconstructed with scaffolds. Native microarchitectural characteristics were not demonstrated in any experimental group.Conclusion: Herein, we demonstrate that bone regeneration can be boosted by scaffold- and seeded scaffold-reconstruction, achieving, respectively, 50% and 70% restoration of presurgical bone density in 120 days, compared to 40% restoration seen in spontaneous regeneration. Although optimization of the regenerative performance is needed, these results will help to establish a baseline reference for future experiments.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3