Improved catalytic performance and molecular insight for lipoxygenase from Enterovibrio norvegicus via directed evolution

Author:

Zhang Bingjie,Chi Huibing,Shen Juan,Tao Yang,Lu Zhaoxin,Lu Fengxia,Zhu Ping

Abstract

Lipoxygenase (LOX) holds significant promise for food and pharmaceutical industries. However, albeit its application has been hampered by low catalytic activity and suboptimal thermostability. To address the drawbacks, a directed evolution strategy was explored to enhance the catalytic activity and thermostability of LOX from Enterovibrio norvegicus (EnLOX) for the first time. After two rounds of error-prone polymerase chain reaction (error-prone PCR) and one generations of sequential DNA shuffling, all of four different mutants showed a significant increase in the specific activity of EnLOX, ranging from 132.07 ± 9.34 to 330.17 ± 18.54 U/mg. Among these mutants, D95E/T99A/A121H/S142N/N444W/S613G (EAHNWG) exhibited the highest specific activity, which was 8.25-fold higher than the wild-type enzyme (WT). Meanwhile, the catalytic efficiency (Kcat/Km) of EAHNWG was also improved, which was 13.61 ± 1.67 s−1 μM−1, in comparison to that of WT (4.83 ± 0.38 s−1 μM−1). In addition, mutant EAHNWG had a satisfied thermostability with the t1/2,50 °C value of 6.44 ± 0.24 h, which was 0.4 h longer than that of the WT. Furthermore, the molecular dynamics simulation and structural analysis demonstrated that the reduction of hydrogen bonds number, the enhancement of hydrophobic interactions in the catalytic pocket, and the improvement of flexibility of the lid domain facilitated structural stability and the strength of substrate binding capacity for improved thermal stability and catalytic efficiency of mutant LOX after directed evolution. Overall, these results could provide the guidance for further enzymatic modification of LOX with high catalytic performance for industrial application.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference59 articles.

1. Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids;An;BBA-Mol. Cell. Biol. L.,2018

2. A fluorescent hydrogel-based flow cytometry screening platform for hydrolytic enzymes;Besirlioglu;Enzyme Eng. Conf,2017

3. Protein structure homology modeling using SWISS-MODEL workspace;Bordoli;Nat. Protoc.,2009

4. Recombinant lipoxygenases and oxylipin metabolism in relation to food quality;Casey;Food Biotech.,2004

5. Thermostability enhancement and insight of L-asparaginase from Mycobacterium sp. via consensus-guided engineering;Chi;Appl. Microbiol. Biot.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3