Stature and mitigation systems affect the risk of leg injury in vehicles attacked under the body by explosive devices

Author:

Rebelo Eduardo A,Grigoriadis Grigoris,Carpanen Diagarajen,Bull Anthony M. J.,Masouros Spyros

Abstract

A finite-element (FE) model, previously validated for underbody blast (UBB) loading, was used here to study the effect of stature and of mitigation systems on injury risk to the leg. A range of potential UBB loadings was simulated. The risk of injury to the leg was calculated when no protection was present, when a combat boot (Meindl Desert Fox) was worn, and when a floor mat (IMPAXXTM), which can be laid on the floor of a vehicle, was added. The risk of injury calculated indicates that the floor mat provided a statistically significant reduction in the risk of a major calcaneal injury for peak impact speeds below 17.5 m/s when compared with the scenarios in which the floor mat was not present. The risk of injury to the leg was also calculated for a shorter and a taller stature compared to that of the nominal, 50th percentile male anthropometry; shorter and taller statures were constructed by scaling the length of the tibia of the nominal stature. The results showed that there is a higher risk of leg injury associated with the short stature compared to the nominal and tall statures, whereas the leg-injury risk between nominal and tall statures was statistically similar. These findings provide evidence that the combat boot and the floor mat tested here have an attenuating effect, albeit limited to a range of possible UBB loads. The effect of stature on injury has implications on how vehicle design caters for all potential anthropometries and indeed gender, as women, on average, are shorter than men. The results from the computational simulations here complement laboratory and field experimental models of UBB, and so they contribute to the improvement of UBB safety technology and strategy.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference24 articles.

1. The biomechanics of lower limb injuries in frontal-impact road traffic collisions;Ammori;Afr. Health Sci.,2018

2. Lower extremity injuries and intrusion in frontal crashes;Austin;Natl. Highw. Traffic Saf. Adm.,2012

3. Human foot-ankle injuries and associated risk curves from under body blast loading conditions;Chirvi;Stapp Car Crash J.,2017

4. Foot and ankle injury: The roles of driver anthropometry, footwear and pedal controls;Crandall;Annu. Proc. Assoc. Adv. Automot. Med.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3