Evaluation on the possibility of sound conduction independent of tympanic air cavity for severe tympanic adhesion patients by finite element analysis

Author:

Qin Xiao,Yin Yue,Sun Huiying,Feng Guodong,Gao Zhiqiang

Abstract

Background: For patients with severe tympanic adhesion, reconstructing the tympanic air cavity is often challenging, resulting in poor hearing reconstruction outcomes. Therefore, establishing a sound conduction pathway independent of the tympanic air cavity may be a viable method for reconstructing hearing in these patients.Purpose: The objective of this study was to evaluate the feasibility of sound conduction independent of the tympanic air cavity (i.e., replacing the original cavity with a tympanic vibrating material) using finite element analysis.Methods: We established a sound-structure coupling finite element model of the tympanum vibration conduction system, which included the tympanic membrane (TM), ossicular prosthesis, and tympanic vibrating material. This model was used to simulate middle ear vibrations under sound pressure, and we extracted the frequency response curve of the ossicular prosthesis’ vibration displacement amplitude to evaluate the sound conduction effect of the middle ear. Next, we adjusted the structural and mechanical parameters of the tympanic vibrating material to analyze its impact on the sound conduction effect of the middle ear. Finally, we compared the frequency response curve of the stapes footplate in normal subjects to evaluate the feasibility of sound conduction independent of the tympanic air cavity.Results: The Shell tympanic vibrating material had a better vibration conduction effect compared to solid or porous tympanic vibrating material. The vibration amplitude decreases with the increasing elastic modulus of the tympanic vibrating material. Implantation of 40 kPa-shell tympanic vibrating material had the lowest hearing loss less than 5 dB, and the hearing loss with 1 MPa-porous tympanic vibrating material was largest and less than 25 dB.Conclusion: Our study suggests that replacing the tympanic air cavity with a tympanic vibrating material is feasible. The establishment of a sound conduction pathway independent of the tympanic air cavity could potentially provide a method for hearing reconstruction in patients with severe tympanic adhesion.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference32 articles.

1. Middle ear physiology;Ayerbe;Rev. Laryngol. Otol. Rhinol. Bord.,1999

2. Success rates for various graft materials in tympanoplasty - a review;Bayram;J. Otol.,2020

3. Bone conduction stimulation of the otic capsule: a finite element model of the temporal bone;Borkowski;Acta Bioeng. Biomech.,2019

4. Effect of esterified hyaluronic acid as middle ear packing in tympanoplasty for adhesive otitis media;Deng;Acta Otolaryngol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3