Author:
Liu Ye,Gong Jin-Song,Marshall George,Su Chang,Hall Michael,Li Heng,Xu Guo-Qiang,Shi Jin-Song,Xu Zheng-Hong
Abstract
Introduction: NADH pyrophosphatase, a hydrolase catalyzing the phosphate bond of NADH to reduced nicotinamide mononucleotide, has potential applications in the food, cosmetic and pharmaceutical industry.Methods: Here, we investigated the effects of vector screening, promoter and RBS strategies on NADH pyrophosphatase expression and protein engineering on its enzymatic activity and thermal stability.Results: In this study, we describe a NADH pyrophosphatase derived from Escherichia coli (EcNudc). Strategies focusing on expression regulation including screening vectors, optimizing promoters and ribosome binding sites were utilized to enhance the productivity of EcNudc (1.8 U/mL). Moreover, protein engineering was adopted to further improve the catalytic properties of EcNudc, achieving 3.3-fold higher activity and 3.6-fold greater thermostability at 50°C. Furthermore, fermentation for the combined mutant R148A-H149E (EcNudc-M) production in a 7 L fermenter was implemented and the enzyme activity of EcNudc-M reached 33.0 U/mL. Finally, the EcNudc-M was applied in the catalysis of NADH with the highest NMNH yield of 16.65 g/L.Discussion: In conclusion, we constructed a commercially available genetically engineered strain with high activity and thermal stability of NADH pyrophosphatase, laying a broad foundation for the biocatalytic industrial production of NMNH and expand its application range.
Subject
Biomedical Engineering,Histology,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献