Acute Effects of Heel-to-Toe Drop and Speed on Running Biomechanics and Strike Pattern in Male Recreational Runners: Application of Statistical Nonparametric Mapping in Lower Limb Biomechanics

Author:

Yu Peimin,He Yuhuan,Gu Yaodong,Liu Yuwei,Xuan Rongrong,Fernandez Justin

Abstract

With the increased popularity of running, many studies have been conducted into footwears that are highly related to running performance and running-related injuries. Previous studies investigated different shoe types and running shoes with different heel-to-toe drops (HTDs). However, no research was found in investigating shoes with negative values with HTD. Therefore, the aim of this study was to determine the acute effect of HTD and running speed on lower limb biomechanics and strike pattern in recreational runners. Thirteen male recreational runners wearing shoes with two different HTDs (−8 and 8 mm) performed running at three different speeds (preferred speed [PS], 90% of PS, 110% of PS). Lower extremity kinematics and ground reaction forces were synchronously captured via Vicon motion analysis system and AMTI force platform. Strike index (SI), vertical average loading rate (VALR), vertical instantaneous loading rate (VILR), excursion, eversion duration, joint angles, and range of motion (ROM) of metatarsophalangeal (MTP), ankle, knee, and hip joints were calculated. Joint angles during the entire stance phase were analyzed applying the statistical nonparametric mapping (SnPM) method. SI and VILR in shoes with −8 mm HTD significantly increased by 18.99% and 31.836 BW/s compared to those with 8 mm HTD (SI: p = 0.002; VILR: p < 0.001). Significant alterations of ROM occurred in the MTP, ankle, and knee joints (p < 0.05), and HTD factor primarily accounted for these changes. Joint angles (MTP, knee, and hip) during the entire stance phase altered due to HTD and speed factors. Running speed primarily influenced the kinematics parameters of knee and hip joints, increasing knee angles in the frontal plane and hip angle in the horizontal plane at PS (p > 0.05). Compared to shoes with 8 mm HTD, shoes with −8 mm HTD may be useful to storage and return energy because of the increased ROM of MTP in the sagittal plane. Besides, forefoot strike gait retraining was recommended before transition from normal running shoes to running shoes with −8 mm HTD.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3