MXene nanomaterials in biomedicine: A bibliometric perspective

Author:

Guo Runying,Hu Daorun,Liu Danrui,Jiang Qingkun,Qiu Jiaxuan

Abstract

Purpose: MXene is two-dimensional (2D) nanomaterials that comprise transition metal carbides, nitrides, and carbonitrides. Their unique nanostructure attributes it a special role in medical applications. However, bibliometric studies have not been conducted in this field. Therefore, the aim of the present study was to conduct a bibliometric analysis to evaluate the global scientific output of MXene in biomedical research, explore the current situation of this field in the past years and predicte its research hotpots.Methods: We utilized visual analysis softwares Citespace and Bibliometrix to analyze all relevant documents published in the period of 2011–2022. The bibliometric records were obtained from the Web of Science Core Collection.Results: A total of 1,489 publications were analyzed in this study. We observed that China is the country with the largest number of publications, with Sichuan University being the institution with the highest number of publications in this field. The most publications on MXene medicine research in the past year were found primarily in journals about Chemistry/Materials/Physics. Moreover, ACS Applied Materials and Interfaces was found to be the most productive journal in this field. Co-cited references and keyword cluster analysis revealed that #antibacterial# and #photothermal therapy# are the research focus keyword and burst detection suggested that driven wearable electronics were newly-emergent research hot spots.Conclusion: Our bibliometric analysis indicates that research on MXene medical application remains an active field of study. At present, the research focus is on the application of MXene in the field of antibacterial taking advantage of its photothermal properties. In the future, wearable electronics is the research direction of MXene medical application.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3