Vitrimer synthesis from recycled polyurethane gylcolysate

Author:

Lin Yu-Hsuan,Chen-Huang Yun-Lin,Chang Alex C.-C.

Abstract

Polyurethanes and plastics have become ubiquitous in modern society, finding use in a wide variety of applications such as clothing, automobiles, and shoes. While these materials provide numerous benefits to human life, their persistence in the environment has caused ecological imbalances. Therefore, new processes are needed to make these materials more sustainable and re-usable. In 2011, Ludwik Leibler introduced a new class of covalent adaptable network (CAN) polymers called Vitrimers. Vitrimers possess self-repairing properties and are capable of being reprocessed due to dynamic exchange or breaking/recombination of covalent bonds, similar to thermoset materials. This study explores the synthesis of Vitrimers using waste polyurethane or plastics as feedstock. The raw materials were glycolysed to obtain the glycolysate, which was then used as a reagent for the Vitrimers synthesis. The main objective of this study was to achieve the maximum self-repairable rate of the prepared sample. The Taguchi orthogonal analysis was employed to guide the experiments. The optimized experimental conditions for polyurethane glycolysis were determined to be under ethylene glycol and catalyzed by sodium hydroxide at 180°C for 1 h, resulting in the highest hydroxyl concentration in the glycolysate. In the second stage of the experiment, the ratio of hexamethylene diisocyanate (HDI) to solvent was set to 2, HDI trimer to solvent was 2, and PGE/glycolysate was 0.5, with equal amounts of PEG and glycolysate used as the solvent. The reaction was carried out at 80°C for 1 h, achieving a self-repair ability of 47.5% in the prepared sample. The results of this study show that waste polyurethane or plastics can be effectively recycled and transformed into vitrimers with self-repairing properties. The use of glycolysis as a feedstock is a promising method for the sustainable recycling of polyurethane waste. The Taguchi orthogonal analysis is an effective approach for optimizing experimental conditions and improving the reproducibility of the results.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3