Thiadiazoloquinoxaline-Based Semiconducting Polymer Nanoparticles for NIR-II Fluorescence Imaging-Guided Photothermal Therapy

Author:

Gu Xuxuan,Liao Keyue,Lu Xiaomei,Huang Wei,Fan Quli

Abstract

Phototheranostics have gained more and more attention in the field of cancer diagnosis and therapy. Among a variety of fluorophores for phototheranostics, semiconducting polymer nanoparticles (SPNs), which are usually constructed by encapsulating hydrophobic semiconducting polymers (SPs) with amphiphilic copolymers, have shown great promise. As second near-infrared (NIR-II) fluorescence imaging has both higher imaging resolution and deeper tissue penetration compared with first near-infrared (NIR-I) fluorescence imaging, NIR-II fluorescent SPNs have been widely designed and prepared. Among numerous structural units for semiconducting polymers (SPs) synthesis, thiadiazoloquinoxaline (TQ) has been proved as an efficient electron acceptor unit for constructing NIR-II fluorescent SPs by reacting with proper electron donor units. Herein, we summarize recent advances in TQ-based SPNs for NIR-II fluorescence imaging-guided cancer photothermal therapy. The preparation of TQ-based SPNs is first described. NIR-II fluorescence imaging-based and multimodal imaging-based phototheranostics are sequentially discussed. At last, the conclusion and future perspectives of this field are presented.

Funder

National Natural Science Foundation of China

Synergetic Innovation Center for Organic Electronics and Information Displays

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3