Ultrasound combined with glial cell line-derived neurotrophic factor-loaded microbubbles for the targeted treatment of drug addiction

Author:

Wang Feng,Wu Hongwei,Hu Azhen,Dong Lei,Lin Xiaoxia,Li Menghao,Wang Yongling,Li Wenjun,Chang Liansheng,Chang Yuqiao,Liu Hanqing,Shi Yu,Li Nana

Abstract

Drug addiction is a serious problem globally, recently exacerbated by the COVID-19 pandemic. Glial cell-derived neurotrophic factor (GDNF) is considered a potentially effective strategy for the treatment of addiction. Previous animal experiments have proven that GDNF has a good therapeutic effect on drug addiction, but its clinical application is limited due to its poor blood-brain barrier (BBB) permeability. Low-frequency focused ultrasound, combined with microbubbles, is a non-invasive and reversible technique for locally-targeted BBB opening. In the present study, magnetic resonance imaging-guided low-frequency focused ultrasound, combined with GDNF microbubbles, was used to target BBB opening in the ventral tegmental area (VTA) region. The effects of GDNF on morphine-induced conditioned place preference (CPP) and acute withdrawal symptoms in rats after a partially opened BBB were evaluated by behavioral observation. Western blot was used to detect changes in tyrosine hydroxylase (TH) expression levels in the VTA region after different treatments, and high performance liquid chromatography was used to detect the changes in monoamine neurotransmitter content. The results showed that ultrasound combined with GDNF microbubbles targeted and opened the BBB in the VTA region, and significantly increased GDNF content, destroyed morphine-induced CPP, and reduced the withdrawal symptoms of morphine addiction in rats. Furthermore, the up-regulation of TH expression and the increase of norepinephrine and dopamine content induced by morphine were significantly reversed, and the increase of 5-hydroxytryptamine content was partially reversed. Therefore, ultrasound combined with GDNF microbubbles to target and open the BBB can effectively increase the content of central GDNF, thus playing a therapeutic role in morphine addiction. Our study provides a new approach to locally open the BBB and target delivery of neurotrophic factors, such as GDNF, to treat brain diseases like addiction.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Shenzhen Municipality

High-Level Hospital Construction Project of Guangdong Provincial People’s Hospital

Sanming Project of Medicine in Shenzhen

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3