Distinction of non-specific low back pain patients with proprioceptive disorders from healthy individuals by linear discriminant analysis

Author:

Shokouhyan Seyed Mohammadreza,Davoudi Mehrdad,Hoviattalab Maryam,Abedi Mohsen,Bervis Soha,Parnianpour Mohamad,Brumagne Simon,Khalaf Kinda

Abstract

The central nervous system (CNS) dynamically employs a sophisticated weighting strategy of sensory input, including vision, vestibular and proprioception signals, towards attaining optimal postural control during different conditions. Non-specific low back pain (NSLBP) patients frequently demonstrate postural control deficiencies which are generally attributed to challenges in proprioceptive reweighting, where they often rely on an ankle strategy regardless of postural conditions. Such impairment could lead to potential loss of balance, increased risk of falling, and Low back pain recurrence. In this study, linear and non-linear indicators were extracted from center-of-pressure (COP) and trunk sagittal angle data based on 4 conditions of vibration positioning (vibration on the back, ankle, none or both), 2 surface conditions (foam or rigid), and 2 different groups (healthy and non-specific low back pain patients). Linear discriminant analysis (LDA) was performed on linear and non-linear indicators to identify the best sensory condition towards accurate distinction of non-specific low back pain patients from healthy controls. Two indicators: Phase Plane Portrait ML and Entropy ML with foam surface condition and both ankle and back vibration on, were able to completely differentiate the non-specific low back pain groups. The proposed methodology can help clinicians quantitatively assess the sensory status of non-specific low back pain patients at the initial phase of diagnosis and throughout treatment. Although the results demonstrated the potential effectiveness of our approach in Low back pain patient distinction, a larger and more diverse population is required for comprehensive validation.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3