Effects of the intensity, duration and muscle mass factors of isometric exercise on acute local muscle hemodynamic responses and systematic blood pressure regulation

Author:

Lin Songmei,Sun Pu,Huang Liwan,Hernandez Manuel,Yu Hongjun,Jan Yih-Kuen

Abstract

Isometric exercise is a non-pharmacologic intervention to improve muscle hemodynamic responses and blood pressure in humans. However, the effects of intensity, duration, and muscle mass factors of isometric exercise on local muscle hemodynamic responses and systemic blood pressure regulation have not been studied. The purpose of this study was to assess whether various modes of isometric exercise could induce various levels of muscle hemodynamic responses that are related to the blood pressure changes. Near-infrared spectroscopy was used to assess muscle hemodynamic responses after 4 isometric exercise protocols in 20 healthy adults. One-way analysis of variance (ANOVA) with repeated measures was used to assess the effect of factors of isometric exercise on oxyhemoglobin, deoxy-hemoglobin, blood volume, and oxygenation. For oxygenation, the lowest mean was recorded for the unilateral isometric handgrip exercise at 30% of MVC for 2 min (−0.317 ± 0.379 μM) while the highest mean was observed for the isometric wall squat (1.496 ± 0.498 μM, P < 0.05). Additionally, both the bilateral isometric handgrip exercise at 30% MVC for 1 min (1.340 ± 0.711 μM, P < 0.05) and the unilateral isometric handgrip exercise at 20% MVC for 3 min (0.798 ± 0.324 μM, P < 0.05) are significantly higher than 30% of MVC for 2 min. Blood pressure showed an inverse trend with oxygenation changes of the forearm muscle. The study indicates that the duration and muscle mass of isometric exercise are more effective on oxygenation responses and systematic blood pressure regulation, and suggests that the local muscle oxygenation factor following isometric contractions may mediate systematic blood pressure regulation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3