Comparative experimental study of the biomechanical properties of retrograde tibial nailing and distal tibia plate in distal tibia fracture

Author:

Lin Xuping,Zhang Cong,Yang Yanfang,Yang Wencheng,Wang Xiaomeng,Lu Haichuan,Liu Qingjun

Abstract

Objective: A biomechanical comparative analysis was conducted to evaluate the retrograde tibial nailing (RTN) and distal tibia plate techniques for the treatment of distal tibia fractures.Methods: Fourteen fresh adult tibia specimens were selected, consisting of seven males and seven females aged 34–55 years. The specimens were randomly divided into two groups (Group A and Group B) using a numerical table method, with seven specimens in each group. Group A underwent internal fixation of distal tibial fractures using RTN, while Group B received internal fixation using a plate. The axial compression properties of the specimens were tested in the neutral positions under pressures of 100, 200, 300, 400, and 500 N. Additionally, the torsional resistance of the two groups was assessed by subjecting the specimens to torques of 1.0, 2.0, 3.0, 4.0, and 5.0 N m.Results: At pressures of 400 and 500 N, the axial compression displacement in Group A (1.11 ± 0.06, 1.24 ± 0.05) mm was significantly smaller than that in Group B (1.21 ± 0.08, 1.37 ± 0.11) mm (p = 0.023, 0.019). Moreover, at a pressure of 500 N, the axial compression stiffness in Group A (389.24 ± 17.79) N/mm was significantly higher than that of the control group (362.37 ± 14.44) N/mm (p = 0.010). When subjected to torques of 4 and 5 N m, the torsion angle in Group A (2.97° ± 0.23°, 3.41° ± 0.17°) was significantly smaller compared to Group B (3.31° ± 0.28°, 3.76° ± 0.20°) (p = 0.035, 0.004). Furthermore, at a torque of 5 N m, the torsional stiffness in Group A (1.48 ± 0.07) N m/° was significantly higher than that in Group B (1.36 ± 0.06) N·m/° (p = 0.003).Conclusion: The results obtained from the study demonstrate that the biomechanical performance of RTN outperforms that of the distal tibial plate, providing valuable biomechanical data to support the clinical implementation of RTN.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3