Author:
Chen Xiaohua,Liu Hengyu,Zhang Qianqian,Chen Xuehua,Wang Lihui,Yu Yanling,Hao Yuanping
Abstract
Acidic bacterial biofilms-associated enamel white spot lesions (WSLs) are one of the hallmarks of early caries, causing demineralization and decomposition of dental hard tissues. Therefore, to effectively prevent and treat WSLs, it is important to inhibit the activity of cariogenic bacteria while promoting the remineralization of demineralized enamel. Amorphous calcium phosphate (ACP) favors hard tissue remineralization due to its biological activity and ability to release large amounts of Ca2+ and PO43-. However, ACP-based biomineralization technology is not effective due to its lack of antimicrobial properties. Here, carboxymethyl chitosan (CMCS) was employed as a reducing agent and stabilizer, and dual-functional nanohybrids CMCS/AuNPs/ACP with biofilm resistance and mineralization properties were successfully synthesized. The addition of AuNPs enhances the antimicrobial activity and participates in regulating the formation of hydroxyapatite (HAp). The nanohybrids exhibited significant destructive effects against cariogenic bacteria and their biofilms and showed bactericidal activity under bacteria-induced acidic conditions. More importantly, this nanohybrids showed superior results in promoting the remineralization of demineralized enamel, compared to fluoride and CMCS/ACP in vitro. The CMCS/AuNPs/ACP nanohybrids not only reverse the cariogenic microenvironment at the microbial level, but also promote self-repairing of enamel WSLs regarding the microstructure. The present work offers a theoretical and experimental basis for using the CMCS/AuNPs/ACP nanohybrids as a potential dual-functional agent for the clinical treatment of enamel WSLs.