TSE-GAN: strain elastography using generative adversarial network for thyroid disease diagnosis

Author:

Song Anping,Li Tianyi,Ding Xuehai,Wu Mingye,Wang Ren

Abstract

Over the past 35 years, studies conducted worldwide have revealed a threefold increase in the incidence of thyroid cancer. Strain elastography is a new imaging technique to identify benign and malignant thyroid nodules due to its sensitivity to tissue stiffness. However, there are certain limitations of this technique, particularly in terms of standardization of the compression process, evaluation of results and several assumptions used in commercial strain elastography modes for the purpose of simplifying imaging analysis. In this work, we propose a novel conditional generative adversarial network (TSE-GAN) for automatically generating thyroid strain elastograms, which adopts a global-to-local architecture to improve the ability of extracting multi-scale features and develops an adaptive deformable U-net structure in the sub-generator to apply effective deformation. Furthermore, we introduce a Lab-based loss function to induce the networks to generate realistic thyroid elastograms that conform to the probability distribution of the target domain. Qualitative and quantitative assessments are conducted on a clinical dataset provided by Shanghai Sixth People’s Hospital. Experimental results demonstrate that thyroid elastograms generated by the proposed TSE-GAN outperform state-of-the-art image translation methods in meeting the needs of clinical diagnostic applications and providing practical value.

Publisher

Frontiers Media SA

Reference27 articles.

1. Unsupervised medical image translation using cycle-medgan;Armanious,2019

2. Medgan: medical image translation using gans;Armanious;Comput. Med. imaging Graph.,2020

3. Learning implicit brain mri manifolds with deep learning;Bermudez,2018

4. Targan: target-aware generative adversarial networks for multi-modality medical image translation;Chen,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3