Fabrication of polycaprolactone electrospun fibres with retinyl acetate for antioxidant delivery in a ROS-mimicking environment

Author:

Westwood Lorna,Emmerson Elaine,Callanan Anthony

Abstract

Background: Increased cancer rates denote that one in two people will be diagnosed with cancer in their lifetime. Over 60% of cancer patients receive radiotherapy, either as a stand-alone treatment or in combination with other treatments such as chemotherapy and surgery. Whilst radiotherapy is effective in destroying cancer cells, it also causes subsequent damage to healthy cells and surrounding tissue due to alterations in the tumor microenvironment and an increase in reactive oxygen species (ROS). This can cause extensive damage that impairs tissue function, and the likelihood of tissue regeneration and restoration of function is significantly reduced as new healthy cells cannot survive in the damaged environment. In the treatment of head and neck cancers, radiotherapy can cause salivary gland dysfunction. This significantly impairs the patient’s quality of life and there is currently no cure, only palliative treatment options. Tissue engineering approaches are used to mimic the microenvironment of the tissue and can mediate the damaged microenvironment via bioactive compounds, to support the delivery, survival, and proliferation of new, healthy cells into the damaged environment.Methods: In this study, retinyl acetate, a derivative of vitamin A, was successfully incorporated into electrospun polycaprolactone fibres.Results: SEM images and characterization analyses showed that all scaffolds produced had similar characteristics, including fiber morphology and scaffold wettability. The vitamin scaffolds were shown to exert an antioxidant effect through scavenging activity of both DPPH and hydroxyl radicals in vitro. Critically, the antioxidant scaffolds supported the growth of human submandibular gland cells and significantly upregulated the expression of GPx1, an antioxidant enzyme, when cultured under both normal conditions and under a simulated oxidative stress environment.Discussion: These results suggest that incorporation of retinyl acetate into electrospun fibres has may mediate the damaged microenvironment post cancer radiation therapy.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3