Intraoperative sensor technology quantifies inter-prosthesis pressure for predicting lower limb alignment after Oxford unicompartmental knee arthroplasty

Author:

Ge Juncheng,Sun Xiaowei,Liu Changquan,Zhang Qidong,Wang Bailiang,Guo Wanshou

Abstract

Purpose: The aim of this study is to quantify inter-prosthetic pressures at different knee angles in Oxford unicompartmental knee arthroplasty (OUKA) and its correlation with postoperative lower limb alignment.Methods: This study included 101 patients (122 knees) who underwent OUKA from March 2022 to July 2022. The previously designed matrix flexible force sensor was used to measure the inter-prosthesis pressure of different knee joint angles during the UKA operation, and the force variation trend and gap balance difference were obtained. The correlation between inter-prosthesis pressure and postoperative lower limb alignment index including hip-knee-ankle angle (HKAA) and posterior tibial slope (PTS) was analyzed. The effect of PTS change (ΔPTS) on the inter-prosthesis pressure and the range of motion (ROM) of the knee joint was analyzed. Radiographic and short-term clinical outcomes of included patients were assessed.Results: The inter-prosthesis pressure of the different knee joint angles during the operation was not consistent. The mean inter-prosthesis pressure and gap balance difference were 73.68.28 ± 41.65N and 36.48 ± 20.58N. The inter-prosthesis pressure at 0° and 20° was positively correlated with postoperative HKAA (p < 0.001). ΔPTS was positively correlated with the pressure at the end of knee extension and negatively correlated with the pressure at the end of knee flexion (p < 0.001). The HKAA, ROM, degree of fixed knee flexion deformity, and knee society score of the included patients were significantly improved compared with those before the operation (p < 0.001).Conclusion: The inter-prosthesis pressure measured at the knee extension position can predict postoperative HKAA to some degree. Changes in PTS will affect the inter-prosthesis pressure at the end of flexion and end of knee extension, but this change is not related to the range of motion of the knee joint.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3