Effect of different landing actions on knee joint biomechanics of female college athletes: Based on opensim simulation

Author:

Chen Liang,Jiang Ziang,Yang Chen,Cheng Rongshan,Zheng Size,Qian Jingguang

Abstract

Background: The anterior cruciate ligament (ACL) is one of the most injurious parts of the knee in the biomechanical environment during landing actions. The purpose of this study was to compare the lower limb differences in movement patterns, muscle forces and ACL forces during drop landing (DL), drop vertical jump (DVJ) and forward vertical jump (FVJ).Methods: Eleven basketball and volleyball female college athletes (Division II and I) were recruited. Landing actions of DL, DVJ and FVJ, kinematics and dynamics data were collected synchronously using a motion capture system. OpenSim was used to calculate the ACL load, knee joint angle and moment, and muscle force.Results: At initial contact, different landing movements influenced knee flexion angle; DL action was significantly less than FVJ action (p = 0.046). Different landing actions affected quadriceps femoris forces; FVJ was significantly greater than DL and DVJ actions (p = 0.002 and p = 0.037, respectively). However, different landing movements had no significant effects on other variables (knee extension moment, knee valgus angle and moment, hamstring and gastrocnemius muscle forces, and ACL forces) (p > 0.050).Conclusion: There was no significant difference in the knee valgus, knee valgus moment, and the ACL forces between the three landing actions. However, knee flexion angle, knee extension moments sagittal factors, and quadriceps and gastrocnemius forces are critical factors for ACL injury. The DL action had a significantly smaller knee flexion angle, which may increase the risk of ACL injury, and not recommended to assess the risk of ACL injuries. The FVJ action had a larger knee flexion angle and higher quadriceps femoris forces that were more in line with daily training and competition needs. Therefore, it is recommended to use FVJ action in future studies on risk assessment of ACL injuries and injury prevention in female college athletes.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE USE OF DIGITAL TECHNOLOGIES IN BIOMECHANICS TO SIMULATE THE MUSCULOSKELETAL SYSTEM WHEN PERFORMING A CYCLE OF EXERCISES DEEP SQUAT AND SEMI-SQUAT;RUSSIAN JOURNAL OF INFORMATION TECHNOLOGY IN SPORTS. V.1, №S1, 2024. SPECIAL ISSUE. Collection of abstracts of the VII All-Russian scientific and practical conference with international participation "Sports Informatics Day";2024-01-24

2. Effect of eccentric and concentric overload bouts as post-activation performance enhancement on knee biomechanics of soccer heading;Sport Sciences for Health;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3