Purification of lipopeptide biosurfactant extracts obtained from a complex residual food stream using Tricine-SDS-PAGE electrophoresis

Author:

Moldes A. B.,Álvarez-Chaver P.,Vecino X.,Cruz J. M.

Abstract

Protocols to identify lipopeptide biosurfactant extracts contained in complex residual streams are very important, as fermented agri-food matrices are potential sources of these valuable compounds. For instance, corn steep liquor (CSL), a secondary stream of the corn wet-milling industry, is composed of a mixture of microbial metabolites, produced during the corn steeping process, and other natural metabolites released from corn, that can interfere with the purification and analysis of lipopeptides. Electrophoresis could be an interesting technique for the purification and further characterization of lipopeptide biosurfactant extracts contained in secondary residual streams like CSL, but there is little existing literature about it. It is necessary to consider that lipopeptide biosurfactants, like Surfactin, usually are substances that are poorly soluble in water at acidic or neutral pH, forming micelles what can inhibit their separation by electrophoresis. In this work, two lipopeptide biosurfactant extracts obtained directly from CSL, after liquid–liquid extraction with chloroform or ethyl acetate, were purified by applying a second liquid extraction with ethanol. Following that, ethanolic biosurfactant extracts were subjected to electrophoresis under different conditions. Lipopeptides on Tricine-SDS-PAGE (polyacrylamide gels) were better visualized and identified by fluorescence using SYPRO Ruby dye than using Coomassie blue dye. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of lipopeptide isoforms separated by electrophoresis revealed the presence of masses at 1,044, 1,058, and 1,074 m/z, concluding that Tricine-SDS-PAGE electrophoresis combined with MALDI-TOF-MS could be a useful tool for purifying and identifying lipopeptides in complex matrices.

Funder

Ministerio de Ciencia e Innovación

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3