Performance of Machine Learning Algorithms for Predicting Adverse Outcomes in Community-Acquired Pneumonia

Author:

Xu Zhixiao,Guo Kun,Chu Weiwei,Lou Jingwen,Chen Chengshui

Abstract

Background: The ability to assess adverse outcomes in patients with community-acquired pneumonia (CAP) could improve clinical decision-making to enhance clinical practice, but the studies remain insufficient, and similarly, few machine learning (ML) models have been developed.Objective: We aimed to explore the effectiveness of predicting adverse outcomes in CAP through ML models.Methods: A total of 2,302 adults with CAP who were prospectively recruited between January 2012 and March 2015 across three cities in South America were extracted from DryadData. After a 70:30 training set: test set split of the data, nine ML algorithms were executed and their diagnostic accuracy was measured mainly by the area under the curve (AUC). The nine ML algorithms included decision trees, random forests, extreme gradient boosting (XGBoost), support vector machines, Naïve Bayes, K-nearest neighbors, ridge regression, logistic regression without regularization, and neural networks. The adverse outcomes included hospital admission, mortality, ICU admission, and one-year post-enrollment status.Results: The XGBoost algorithm had the best performance in predicting hospital admission. Its AUC reached 0.921, and accuracy, precision, recall, and F1-score were better than those of other models. In the prediction of ICU admission, a model trained with the XGBoost algorithm showed the best performance with AUC 0.801. XGBoost algorithm also did a good job at predicting one-year post-enrollment status. The results of AUC, accuracy, precision, recall, and F1-score indicated the algorithm had high accuracy and precision. In addition, the best performance was seen by the neural network algorithm when predicting death (AUC 0.831).Conclusions: ML algorithms, particularly the XGBoost algorithm, were feasible and effective in predicting adverse outcomes of CAP patients. The ML models based on available common clinical features had great potential to guide individual treatment and subsequent clinical decisions.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3