Evaluating the use of a novel low-cost measurement insole to characterise plantar foot strain during gait loading regimes

Author:

Crossland Sarah R.,Siddle Heidi J.,Brockett Claire L.,Culmer Peter

Abstract

Introduction: Under plantar loading regimes, it is accepted that both pressure and shear strain biomechanically contribute to formation and deterioration of diabetic foot ulceration (DFU). Plantar foot strain characteristics in the at-risk diabetic foot are little researched due to lack of measurement devices. Plantar pressure comparatively, is widely quantified and used in the characterisation of diabetic foot ulceration risk, with a range of clinically implemented pressure measurement devices on the market. With the development of novel strain quantification methods in its infancy, feasibility testing and validation of these measurement devices for use is required. Initial studies centre on normal walking speed, reflecting common activities of daily living, but evaluating response to differing gait loading regimes is needed to support the use of such technologies for potential clinical translation. This study evaluates the effects of speed and inclination on stance time, strain location and strain response using a low-cost novel strain measurement insole.Methods: The STrain Analysis and Mapping of the Plantar Aspect (STAMPS) insole has been developed, and feasibility tested under self-selected normal walking speeds to characterise plantar foot strain, with testing beyond this limited regime required. A treadmill was implemented to standardise speed and inclination for a range of daily plantar loading conditions. A small cohort, comprising of five non-diabetic participants, were examined at slow (0.75 m/s), normal (1.25 m/s) and brisk (2 m/s) walking speeds and normal speed at inclination (10% gradient).Results: Plantar strain active regions were seen to increase with increasing speed across all participants. With inclination, it was seen that strain active regions reduce in the hindfoot and show a tendency to forefoot with discretionary changes to strain seen. Stance time decreases with increasing speed, as expected, with reduced stance time with inclination.Discussion: Comparison of the strain response and stance time should be considered when evaluating foot biomechanics in diabetic populations to assess strain time interval effects. This study supports the evaluation of the STAMPS insole to successfully track strain changes under differing plantar loading conditions and warrants further investigation of healthy and diabetic cohorts to assess the implications for use as a risk assessment tool for DFU.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference45 articles.

1. Foot plantar pressure measurement system: A review;Abdul Razak;Sensors Switz.,2012

2. Establishment of a measurement method for in-shoe pressure and shear stress in specific regions for diabetic ulcer prevention;Amemiya,2016

3. Diabetic foot ulcers and their recurrence;Armstrong;N. Engl. J. Med.,2017

4. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update);Bus;Diabetes/Metabolism Res. Rev.,2020

5. Guidelines on the prevention of foot ulcers in persons with diabetes(IWGDF 2023 update);Bus;Diabetes Metab. Res. Rev.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3