Biosynthetic approaches to efficient assimilation of CO2via photorespiration modification in plant chassis

Author:

Wang Qing,Yang Hao,Cao Peijian,Chen Fangjian,Zhao Lei

Abstract

Plant chassis has emerged as the platform with great potential for bioproduction of high value-added products such as recombinant protein, vaccine and natural product. However, as the primary metabolic pathway, photorespiration results in the loss of photosynthetically fixed carbon compounds and limits the exploration of plant chassis. People are endeavored to reduce the photorespiration energy or carbon loss based on variation screening or genetic engineering. Insomuch as protein engineering of Rubisco has not resulted in the significant improvement of Rubisco specificity which is linked to the direct CO2 fixation, the biosynthetic approaches of photorespiration bypass are gaining much more attention and manifested great potentiality in conferring efficient assimilation of CO2 in plant chassis. In this review, we summarize the recent studies on the metabolic pathway design and implementation of photorespiration alternative pathway aiming to provide clues to efficiently enhance carbon fixation via the modification of photorespiration in plant chassis for bioproduction. These will benefit the development of plant synthetic metabolism for biorefineries via improvement of artificial carbon sequestration cycle, particularly for the mitigation of serious challenges such as extreme climate change, food and energy shortages in the future.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference54 articles.

1. Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases;Anderson;Biochimica Biophysica Acta - Enzym.,1971

2. Daring metabolic designs for enhanced plant carbon fixation;Bar-Even;Plant Sci.,2018

3. Rubisco is not really so bad;Bathellier;Plant Cell Environ.,2018

4. Engineering improved photosynthesis in the era of synthetic biology;Batista-Silva;Plant Commun.,2020

5. Photorespiration: Players, partners and origin;Bauwe;Trends Plant Sci.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3