Phosphorylated pullulan promotes calcification during bone regeneration in the bone defects of rat tibiae

Author:

Morimoto Yasuhito,Hasegawa Tomoka,Hongo Hiromi,Yamamoto Tomomaya,Maruoka Haruhi,Haraguchi-Kitakamae Mai,Nakanishi Ko,Yamamoto Tsuneyuki,Ishizu Hotaka,Shimizu Tomohiro,Yoshihara Kumiko,Yoshida Yasuhiro,Sugaya Tsutomu,Amizuka Norio

Abstract

The current study aimed to evaluate bone tissue regeneration using a combination of β-tricalcium phosphate (βTCP) and phosphorylated pullulan (PPL, a phosphate-rich polysaccharide polymer consisting of maltotriose units). Round defects of 2 mm diameter were created in the arterial center of rat tibiae, which were further treated with vehicle (control group), βTCP (βTCP group), or βTCP + PPL (βTCP + PPL group) grafts. The control specimens without bone grafts exhibited rapid bone formation after 1 week; however, the regenerated bone was not resorbed until 4 weeks. In contrast, βTCP-grafted specimens exhibited fewer but thicker trabeculae, whereas the βTCP + PPL group displayed many fine trabeculae at 4 weeks. In the βTCP + PPL group, new bone was associated with the βTCP granules and PPL. Similarly, PHOSPHO1-positive osteoblasts were localized on the βTCP granules as well as the PPL. On the other hand, TRAP-reactive osteoclasts predominantly localized on newly-formed bone and βTCP granules rather than on the PPL. No significant differences were observed in the expression of Alp, Integrin αv, Osteopontin, Osteocalcin, and Dmp-1 in PPL-treated MC3T3-E1 osteoblastic cells, suggesting that PPL did not facilitate osteoblastic differentiation. However, von Kossa staining identified abundant needle-like calcified structures extending inside the PPL. Furthermore, transmission electron microscopy (TEM) revealed many globular structures identical to calcified nodules. In addition, calcified collagen fibrils were observed in the superficial layer of the PPL. Thus, PPL may serve as a scaffold for osteoblastic bone formation and promotes calcification on its surface. In conclusion, we speculated that βTCP and PPL might promote bone regeneration and could be integrated into promising osteoconductive materials.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3