Nanobiotechnological basis of an oxygen carrier with enhanced carbonic anhydrase for CO2 transport and enhanced catalase and superoxide dismutase for antioxidant function

Author:

Bian Yuzhu,Chang Thomas Ming Swi

Abstract

This is a mini review on the biotechnological aspects of the most extensively developed hemoglobin-based oxygen carriers The emphasis is on the most recent Polyhemoglobin-catalase-superoxide dismutase-carbonic anhydrase (PolyHb-CAT-SOD-CA), which is a nanobiotechnological complex that is being investigated and scaled up with the potential for clinical use as nanobiotherapeutics. Hemoglobin, a tetramer, is an excellent oxygen carrier. However, in the body it is converted into toxic dimers. Diacid or glutaraldehyde can crosslink hemoglobin into polyhemoglobin (PolyHb) and prevent its breakdown into toxic dimers. This has been developed and tested in clinical trials. A bovine polyhemoglobin has been approved for routine clinical use for surgical procedures in South Africa and Russia. Clinical trials with human PolyHb in hemorrhagic shock were effective but with a very slight increase in non-fatal myocardial ischemia. This could be due to a number of reasons. For those conditions with ischemia-reperfusion, one would need an oxygen carrier with antioxidant properties. One approach to remedy this is with prepared polyhemoglobin-catalase-superoxide dismutase (PolyHb-CAT-SOD). Another reason is an increase in intracellular pCO2. We therefore added an enhanced level of carbonic anhydrase to prepare a PolyHb-CAT-SOD-CA. The result is an oxygen carrier with enhanced Carbonic Anhydrase for CO2 transport and enhanced Catalase and Superoxide Dismutase for antioxidant functions. Detailed efficacy and safety studies have led to the industrial scale up towards clinical trial. In the meantime, oxygen carriers are being investigated around the world for use in ex vivo biotechnological fluid for organ preservation for transplantation, with one already approved in France.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3