Identifying underlying individuality across running, walking, and handwriting patterns with conditional cycle–consistent generative adversarial networks

Author:

Burdack Johannes,Giesselbach Sven,Simak Marvin L.,Ndiaye Mamadou L.,Marquardt Christian,Schöllhorn Wolfgang I.

Abstract

In recent years, the analysis of movement patterns has increasingly focused on the individuality of movements. After long speculations about weak individuality, strong individuality is now accepted, and the first situation–dependent fine structures within it are already identified. Methodologically, however, only signals of the same movements have been compared so far. The goal of this work is to detect cross-movement commonalities of individual walking, running, and handwriting patterns using data augmentation. A total of 17 healthy adults (35.8 ± 11.1 years, eight women and nine men) each performed 627.9 ± 129.0 walking strides, 962.9 ± 182.0 running strides, and 59.25 ± 1.8 handwritings. Using the conditional cycle-consistent generative adversarial network (CycleGAN), conditioned on the participant’s class, a pairwise transformation between the vertical ground reaction force during walking and running and the vertical pen pressure during handwriting was learned in the first step. In the second step, the original data of the respective movements were used to artificially generate the other movement data. In the third step, whether the artificially generated data could be correctly assigned to a person via classification using a support vector machine trained with original data of the movement was tested. The classification F1–score ranged from 46.8% for handwriting data generated from walking data to 98.9% for walking data generated from running data. Thus, cross–movement individual patterns could be identified. Therefore, the methodology presented in this study may help to enable cross–movement analysis and the artificial generation of larger amounts of data.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3