The Research Advance of Cell Bridges in vitro

Author:

Zhang Qing

Abstract

The microenvironment in which cells reside in vivo dictates their biological and mechanical functioning is associated with morphogenetic and regenerative processes and may find implications in regenerative medicine and tissue engineering. The development of nano- and micro-fabricated technologies, three-dimensional (3D) printing technique, and biomimetic medical materials have enabled researchers to prepare novel advanced substrates mimicking the in vivo microenvironment. Most of the novel morphologies and behaviors of cells, including contact guidance and cell bridges which are observed in vivo but are not perceived in the traditional two-dimensional (2D) culture system, emerged on those novel substrates. Using cell bridges, cell can span over the surface of substrates to maintain mechanical stability and integrity of tissue, as observed in physiological processes, such as wound healing, regeneration and development. Compared to contact guidance, which has received increased attention and is investigated extensively, studies on cell bridges remain scarce. Therefore, in this mini-review, we have comprehensively summarized and classified different kinds of cell bridges formed on various substrates and highlighted possible biophysical mechanisms underlying cell bridge formation for their possible implication in the fields of tissue engineering and regenerative medicine.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3