Automatic Classification of Barefoot and Shod Populations Based on the Foot Metrics and Plantar Pressure Patterns

Author:

Xiang Liangliang,Gu Yaodong,Mei Qichang,Wang Alan,Shim Vickie,Fernandez Justin

Abstract

The human being’s locomotion under the barefoot condition enables normal foot function and lower limb biomechanical performance from a biological evolution perspective. No study has demonstrated the specific differences between habitually barefoot and shod cohorts based on foot morphology and dynamic plantar pressure during walking and running. The present study aimed to assess and classify foot metrics and dynamic plantar pressure patterns of barefoot and shod people via machine learning algorithms. One hundred and forty-six age-matched barefoot (n = 78) and shod (n = 68) participants were recruited for this study. Gaussian Naïve Bayes were selected to identify foot morphology differences between unshod and shod cohorts. The support vector machine (SVM) classifiers based on the principal component analysis (PCA) feature extraction and recursive feature elimination (RFE) feature selection methods were utilized to separate and classify the barefoot and shod populations via walking and running plantar pressure parameters. Peak pressure in the M1-M5 regions during running was significantly higher for the shod participants, increasing 34.8, 37.3, 29.2, 31.7, and 40.1%, respectively. The test accuracy of the Gaussian Naïve Bayes model achieved an accuracy of 93%. The mean 10-fold cross-validation scores were 0.98 and 0.96 for the RFE- and PCA-based SVM models, and both feature extract-based and feature select-based SVM models achieved an accuracy of 95%. The foot shape, especially the forefoot region, was shown to be a valuable classifier of shod and unshod groups. Dynamic pressure patterns during running contribute most to the identification of the two cohorts, especially the forefoot region.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3