Whole-body movement analysis using principal component analysis: What is the internal consistency between outcomes originating from the same movement simultaneously recorded with different measurement devices?

Author:

Van Andel Steven,Mohr Maurice,Schmidt Andreas,Werner Inge,Federolf Peter

Abstract

A growing number of studies apply Principal Component Analysis (PCA) on whole-body kinematic data to facilitate an analysis of posture changes in human movement. An unanswered question is, how much the PCA outcomes depend on the chosen measurement device. This study aimed to assess the internal consistency of PCA outcomes from treadmill walking motion capture data simultaneously collected through laboratory-grade optical motion capture and field-suitable inertial-based motion tracking. Data was simultaneously collected using VICON (whole-body plug-in gait marker positions) and Xsens (body segment positions) from 20 participants during 2-min treadmill walking. Using PCA, Principal Movements (PMs) were determined using two commonly used practices: on an individual and a grouped basis. For both, correlation matrices were used to determine internal consistency between outcomes from either measurement system for each PM. Both individual and grouped approach showed excellent internal consistency between outcomes from the two systems among the lower order PMs. For the individual analysis, high correlations were only found along the diagonal of the correlation matrix while the grouped analysis also showed high off-diagonal correlations. These results have important implications for future application of PCA in terms of the independence of the resulting PM data, the way group-differences are expressed in higher-order PMs and the interpretation of movement complexity. Concluding, while PCA-outcomes from the two systems start to deviate in the higher order PMs, excellent internal consistency was found in the lower order PMs which already represent about 98% of the variance in the dataset.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3